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of space-filling branes which are crucial for the consistency of orientifold models and have

not been derived from an alternative approach, with the exception of the 10-dimensional

case. It follows that the gaugings of supergravities and the spacetime-filling branes possess

an eleven dimensional origin within the E11 formulation of M-theory. This and previous

results very strongly suggest that all the fields in the adjoint representation of E11 have a

physical interpretation.
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1. Introduction

The IIA [1] and IIB [2 – 4] supergravity theories are the low energy effective actions for the

corresponding IIA and IIB string theories, while the eleven dimensional supergravity the-

ory [5] is thought to be the low energy effective action for an as yet undefined theory called

M-theory. By dimensionally reducing any of these three supergravity theories on tori one

finds maximal supergravity theories in lower dimensions. One of the most surprising dis-

coveries concerning supergravity theories was the realisation that the maximal one in four

dimensions possesses a hidden E7 symmetry [6]. Furthermore, the maximal supergravity

theory in three dimensions has an E8 symmetry and more generally the maximal theory in

D dimensions possesses an E11−D symmetry for D ≥ 3 [7], and one finds E9 in D = 2 [8].

In addition, the IIB theory possesses an SL(2, R) symmetry [2]. The scalar fields which are

created by the dimensional reduction process belong to a coset, or non-linear realisation,

based on the corresponding E11−D algebra with the local sub-algebra being the Cartan

involution invariant sub-algebra. All these supergravity theories possess charged states

which are rotated by these symmetries and their charges obey quantisation conditions [9].

This has lead to the conjecture [10 – 12] that discrete versions of the above groups, denoted

by G(Z), are symmetries in string theory, e.g. the SL(2, R) symmetry of the IIB supergrav-

ity [2] becomes an SL(2, Z) discrete symmetry [12]. The IIA and IIB supergravity theories

and their dimensional reductions are uniquely determined by virtue of the supersymmetry

that they possess and as a result they contain all the perturbative and non-perturbative

effects of the corresponding IIA and IIB string theories. It is for this reason that these

supergravity theories have played such an important role in our understanding of string

theory as their properties transcend any particular formulation of it.

All the supergravity theories mentioned above are maximal in that they are invariant

under the largest possible number of supersymmetries, namely 32. They also possess no
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other dimensional parameters other than the Planck scale. In fact, even this parameter can

be absorbed into the fields such that it is absent from the equations of motion. We will refer

to such theories as massless maximal supergravity theories. Indeed, their uniqueness rests

on the absence of other dimensionful parameters. There are however, other theories that are

also invariant under 32 supersymmetries, but possess additional dimensionful parameters;

in this paper we will refer to these theories as massive maximal supergravity theories.

These can be viewed as deformations of the massless maximal theories. However, unlike

the massless maximal supergravity theories they can not in general be obtained by a process

of dimensional reduction and in each dimension they have been determined by analysing

the deformations that the corresponding massless maximal supergravity admits. The first

example of such a theory was found in four dimensions [13], and it results from gauging an

SO(8) subgroup of the global symmetry E7. The highest dimension for which a massive

deformation is allowed is ten, and the corresponding massive theory was discovered by

Romans [14]. This theory possesses a single additional mass parameter and can be thought

of as a deformation of the IIA supergravity theory in which the two-form receives a mass via

a Higgs mechanism. The number of maximal massive theories one finds increases rapidly as

one considers lower and lower dimensions. These theories generically possess a local gauge

symmetry carried by vector fields that can be thought of as part of the symmetry group G

of the corresponding maximal supergravity theory and have potentials for the scalars fields

which contain the dimensionful parameters as well as a cosmological constant. Another

typical feature of massive maximal supergravities is that their field content is not usually

the same as their massless counterparts. As an example consider the five-dimensional SO(6)

gauged supergravity [15]. While the massless maximal supergravity theory [7, 16] contains

27 abelian vectors, the gauged one describes 15 vectors in the adjoint of SO(6), as well as

12 massive tensors satisfying self-duality conditions. One can regard this as an example of

the rearrangement of degrees of freedom induced by the Higgs mechanism.

In recent years there have been a number of systematic searches for massive maximal

supergravity theories and in particular in dimensions from nine to three all such theories

that possess a local gauge group were given in references [17 – 23]. We will refer to theories

that possess a local gauge group as gauged maximal supergravity theories. It is believed

that all massive maximal supergravity theories are gauged supergravities with the possible

exception of Romans theory, which is not so much an exception but more a singular case.

Although some of the massive maximal theories can be seen as arising from Scherk-Schwarz

dimensional reductions, or from compactifications with fluxes turned on, there are many

cases in which a higher dimensional supergravity origin is lacking. This can be seen already

in ten dimensions, where the Romans theory can not be derived by a dimensional reduc-

tion of the eleven-dimensional supergravity theory. Hence, unlike for the maximal massless

supergravities there is in general no higher dimensional origin for the massive maximal

theories in terms of compactification of the eleven and ten dimensional massless ones and

as a result there has been no systematic understanding of massive maximal supergravity

theories. One of the main points of this paper is to show that E11 does provide a system-

atic understanding and an eleven-dimensional origin of all massless and massive maximal

supergravity theories.
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In [24] it has been conjectured that an extension of eleven dimensional supergravity

can be described by a non-linear realisation based on the group E11. This conjecture was

inspired by the result [25] that eleven dimensional supergravity itself can be formulated

as a non-linear realisation of an algebra and that E11 is the smallest Kac-Moody algebra

which contains this algebra. This non-linear realisation in 11 dimensions naturally gives

rise to both a 3-form and a 6-form, and the resulting field equations are first order duality

relations, whose divergence reproduces the 3-form field equations of 11-dimensional super-

gravity. Similarly, the graviton appears together with a dual graviton [24]. Seen from the

perspective of the E11 non-linear realisation, dimensional reduction on tori reveals bigger

and bigger symmetries, but such symmetries are already present in the uncompactified

theory. Compactifying more dimensions corresponds from this view point to choosing a

vacuum in which a bigger subgroup of E11 becomes manifest.

In [26] it was shown that E11 also describes the IIA and IIB theories, where again all the

fields appear together with their magnetic duals and therefore satisfy duality relations. The

E11 non-linear realisation appropriate to a D dimensional theory requires a choice of AD−1

sub-algebra which can be found by deleting nodes in the E11 Dynkin diagram. It turns

out that this sub-algebra is associated in the non-linear realisation with the D-dimensional

gravity sector of the theory and as such the line of nodes corresponding to the AD−1 sub-

Dynkin diagram is called the gravity line. This a reminiscent of a choice of vacuum and

it distinguishes the gravity fields from the other fields in the non-linear realisation which

are classified according to the AD−1 sub-algebra. In eleven dimensions there is only one

such A10 algebra, but in ten dimensions there are two choices corresponding to the IIA and

IIB supergravity theories. In lower dimensions one again finds only one choice of AD−1

sub-algebra. Indeed it is remarkable to see the fields of the adjoint representation of E11

decomposed in terms of the A10 subalgebra corresponding to the IIB theory and observe

that the first entries are precisely those of the fields of IIB supergravity plus their duals [27].

As for any Kac-Moody algebra, E11 contains an infinite number of generators for which

no mathematical classification has been known, and consequently the field content of the

E11 non-linear realisation contains infinitely many fields in addition to those of the usual

formulations of massless maximal supergravity theories. Even for some years after the

conjecture of reference [24] the physical meaning of any of the fields in the adjoint repre-

sentation of E11 beyond those normally associated to the massless maximal supergravity

theories was unclear. An exception was the field Aa1...a10,b,c of mixed symmetry, which oc-

curs in the eleven-dimensional non-linearly realised theory just beyond the fields of eleven

dimensional supergravity; this field upon dimensional reduction to ten dimensions gives rise

to a nine-form. The massive IIA theory of Romans can be accounted for by introducing

a nine-form [28, 29], whose field-strength is dual to Romans’ cosmological constant, and

in [30, 27] it was shown that the E11 non-linear realisation in a 10-dimensional IIA back-

ground with non-vanishing 10-form field strength reproduces Romans’ theory. Therefore

E11 provides an 11-dimensional origin for the massive IIA theory.

In order to see the E11−D symmetry as arising from dimensional reduction of the

traditional formulations of the massless maximal supergravity theories it is crucial that

the forms of rank higher than [D/2] − 1 be replaced by their electromagnetic duals. As
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an example, the dimensional reduction of the 3-form of 11-dimensional supergravity down

to 4 dimensions gives rise to seven 2-forms, and these have to be dualised to scalars in

order to see the whole E7 symmetry arising. As we have mentioned the E11 non-linear

realisation automatically contains all the propagating fields and their magnetic duals and

so when carrying out the dimensional reduction of these formulations it is unnecessary to

introduce any additional fields, which is consistent with the fact that the symmetries that

are found upon dimensional reductions are encoded in the uncompactified theory. Such

democratic formulations have been useful in a number of different contexts; just before

reference [24], in [31] it was shown that the IIA supersymmetry algebra admits a democratic

formulation, in which all the RR-fields are introduced together with their magnetic duals.

In this formulation, the field-strength of the RR 9-form can have any constant value, and

therefore the algebra describes both the massless and the massive IIA theories. Also in

order to classify [19 – 23] the massive maximal supergravities it is necessary to dualise some

of the fields of the corresponding massless theory. Indeed, a program of adding a hierarchy

of higher tensor gauge fields in the context of gauging was begun in [32]. The systematic

dualisation of the traditional fields of supergravity was first advocated in [33], where a

non-linear realisation of the gauge sector of the maximal supergravity theories was given.

The use of forms to encode the indices of the gauge fields resulted in a graded algebra

which has so far not been generalised to include gravity.

The E11 formulation of the IIB theory was also found to contain three 8-forms in the

triplet of SL(2, R) as well as six space-filling 10-forms in the quadruplet and the doublet.

In [34, 35] it was shown that the supersymmetry algebra allows the inclusion of a triplet

of 8-forms dual to the scalars, while in an unexpected development [36] it was found that,

provided one introduced the duals of all the propagating fields, the supersymmetry algebra

of the IIB supergravity theory also allows a quadruplet and a doublet of 10-form fields.

Indeed these forms are precisely the fields predicted by the E11 formulation of the IIB

theory, and furthermore it was later shown [37] that the IIB gauge algebra derived from

E11 precisely agrees with the one resulting from supersymmetry in [36]. The motivation of

reference [36], which followed the results of [38], was to determine the multiplet to which

the RR 10-forms associated to D9-branes belong. The D9-branes are spacetime-filling,

and thus can not be consistently introduced in the IIB string theory because they have

non-vanishing RR charge. This charge multiplies a 10-form gauge field in the Wess-Zumino

term and its variation can not be canceled as 10-forms have no field strength. Nevertheless,

they play a crucial role in constructing type-I string theory as the orientifold projection

of IIB [39], which has the role of canceling the overall RR charge. A similar analysis

was applied to the IIA supergravity theory [40] and it was found that the supersymmetry

algebra closes if two 10-forms are added, a result that is in complete agreement with the

predictions of the E11 formulation of the IIA theory.

Thus the meaning of a few more fields of the E11 non-linear realisation beyond the

supergravity approximation was found. However, more recently a partial classification

of all the fields contained in the E11 non-linear realisation associated with the adjoint

representation has been found [41]. As with any Kac-Moody algebra, the generators of E11

arise from multiple commutators of the so called Chevalley generators. These are contained
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in the generators Ka
b of the A10 sub-algebra when taken together with the generators Rabc,

associated with the three form field in eleven dimensional supergravity. Consequently, all

the positive root generators in E11 arise from multiple commutators of Ka
b and Rabc. The

level of a generator is just the number of times the generator Rabc occurs in the commutator

required to create that generator. It follows that a generator of level l has 3l indices and

that the generators of a given level belong to representations of A10. Of course it can, and

does occur, that some generators can carry blocks of eleven anti-symmetrised indices. We

note that these blocks do not transform under A10. In reference [41] all generators without

any blocks of ten and eleven anti-symmetrised indices were found. It turned out that in this

sector there was essentially a void and the very few generators that did occur corresponded

to all the infinitely many possible dual descriptions of the physical degrees of freedom of

the eleven dimensional supergravity theory, namely the 3-form and the graviton. These

generators appear in the E10 sub-algebra and their presence was noted in [42].

By definition, the remaining fields contain at least one set of ten or eleven antisym-

metric indices. Although the blocks of eleven indices do not transform under the A10

sub-algebra, they do nonetheless have a significance, an example being the 10-forms in ten

dimensional IIB theory. When the generators are viewed in this way they all carry indices

and therefore the corresponding fields are all subject to local gauge transformations. This

is consistent with the belief that all the E11 transformations become local when combined

with the conformal group. From this point of view, the infinite number of fields that are

not dual to the 3-form and the graviton all give rise to no propagating on-shell degrees of

freedom, but nonetheless have a physical meaning.

In this paper we want to extend the analysis of [41]. In particular, we determine all the

forms, that is fields with completely antisymmetric indices, that occur in the E11 non-linear

realisation in dimensions three and above. We do this by considering the eleven dimensional

theory and finding all fields that can give rise to forms in the lower dimensional theory

using dimensional reduction. This is the same result that we would obtain by considering

the forms arising from the E11 non-linear realisation directly in the dimension of interest.

However, the former approach has the advantage of providing an eleven-dimensional origin

of all the forms. Remarkably, there is only a finite number of fields that can generate

forms in any dimension above two. We compute all possible forms that occur in four

dimensions and above as well as all the 1-forms and 2-forms in three dimensions. In any

dimension D, all the forms of rank less than D − 1 lead to the fields of the corresponding

maximal supergravity in a democratic formulation where all the fields appear together

with their magnetic duals. The D − 1-forms have field-strengths which are dual to mass

parameters, whose non-vanishing values lead to massive maximal supergravity theories.

The classification of these D − 1 forms arising from E11 is in precise agreement with the

the massive maximal supergravities [17, 20] found in any dimension using supersymmetry.

It follows that one obtains a classification of all maximal supergravity theories and that they

possess an eleven dimensional origin within the E11 formulation of M-theory. However, this

eleven dimensional origin can and often does arise from fields in the non-linear realisation

that are beyond the supergravity approximation and in this case the corresponding massive

theory can not be obtained as a dimensional reduction from the usual eleven dimensional
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Figure 1: The E11 Dynkin diagram corresponding to 11-dimensional supergravity.

supergravity theory. Our analysis reveals in which cases the massive theory admits a

higher dimensional supergravity origin, and one can thus show why some theories have a

IIB supergravity origin but not an eleven-dimensional supergravity origin and vice-versa.

We also find, except in three dimensions, all possible D-forms which correspond to the

presence of space-filling branes. These are crucial for the consistency of orientifold models

and have not been derived from an alternative approach, with the exception of the ten-

dimensional case. In the classification of the D−1 and D forms for the lower dimensions one

requires fields that correspond to roots of E11 which have rather negative length squared

and in some cases multiplicities more than one. Hence, one is using in these calculations

properties of the E11 Kac-Moody algebra that are very far from those one finds in affine

or finite Lie algebras. The E11 non-linear realisation in D dimensions contains the fields

corresponding to the degrees of freedom of the maximal supergravity theory, as well as

fields for all the infinitely many possible dual descriptions of these propagating degrees of

freedom, together with an infinite number of fields having at least one set of D − 1 or D

indices completely antisymmetrised. Among the latter, there is always a finite number of

D − 1 and D-forms.

The plan of the paper is as follows. In section 2 we classify all the 11-dimensional

fields in E11 that can give rise to forms in any dimension above three, as well as one-forms

and two-forms in three dimensions. In section 3 we summarise the results of the various

dimensional reductions. Section 4 is devoted to a detailed analysis of each dimension

separately. In section 5 we show how the dynamics and in particular the gauging results

from the non-linear realisation, focusing on the five-dimensional case. Section 6 contains

the conclusions.

2. The structure of the eleven dimensional algebra

In order to proceed with the analysis of the eleven dimensional field content resulting from

the non-linear realisation of E11, let us first review some of the basic ideas underlying the

E11 construction of the low-energy effective action of M-theory that will be relevant for the

remaining of the paper. In [24] it was conjectured that an extension of eleven dimensional

supergravity can be described by a non-linear realisation based on the group E11. E11 was

also shown to give rise to non-linear realisations that are extensions of IIA [24] and IIB [26]

supergravities, consistent with the conjecture that E11 is a symmetry of the low-energy

effective action of M-theory [24].
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E11 is the Kac-Moody algebra resulting from the Dynkin diagram of figure 1. The

deletion of the node 11 in the diagram results in the A10 or SL(11, R) algebra that gives

rise in the non-linear realisation to the eleven dimensional gravity sector of the theory.

As previously discussed, the horizontal line in the diagram is called the gravity line. The

simple roots of E11 are the simple roots αi, i = 1, . . . , 10 of A10 as well as the simple root

α11 which is given by

α11 = x − λ8 . (2.1)

Here x is orthogonal to the roots αi, i = 1, . . . , 10 of A10, and λi, i = 1, . . . , 10 are the

fundamental weights of A10. As α11 · α11 = 2 and λ8 · λ8 = 24
11 , one gets

x2 = −
2

11
. (2.2)

Using equation (2.1), any root α of E11 can be written as

α =

10
∑

i=1

niαi + lα11 = lx − Λ (2.3)

where

Λ = lλ8 −

10
∑

i=1

niαi (2.4)

is in the weight space of A10. The integer l, denoting the number of times the simple root

α11 appears in the simple root decomposition of α, is called the level, and the strategy [43 –

45] is to analyse the generators of E11 level by level in terms of the representations of A10.

We wish to decompose the adjoint representation of E11 in terms of representations

of A10. A necessary condition for the occurrence of a representation of A10 with highest

weight
∑

j pjλj , where pj are known as Dynkin indices, is that this weight arises in a root

of E11 in eq. (2.3). In other words, there exists a Λ such that

Λ =
∑

j

pjλj . (2.5)

Taking the scalar product with λi implies that

∑

j

pjA
−1
ji = lA−1

8i − ni , (2.6)

where we have used the equation

(Ajk)
−1 = (λj , λk) (2.7)

valid for any simply laced finite dimensional semi-simple Lie algebra. Here (Aik)
−1 is the

inverse Cartan matrix, which in the case of A10 is given by

(Ajk)
−1 =

{

j(11−k)
11 , j ≤ k

k(11−j)
11 , j ≥ k

. (2.8)
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This equation places strong restrictions on the possible pj, and so the representations

of A10, that can occur at a given level. Using eqs. (2.3), (2.5) and (2.7) one obtains

α2 = −
2

11
l2 +

∑

i,j

pi(Aij)
−1pj . (2.9)

The fact that E11 is a Kac-Moody algebra with symmetric Cartan matrix imposes the

constraint [46]

α2 = 2, 0,−2,−4 . . . (2.10)

on the roots, and therefore each root obeys eq. (2.9) with the constraint (2.10). Observe

that not any root which is a solution of these two equations necessarily leads to a generator

of the E11 algebra, because further constraints come from the Serre relations. Similarly, the

multiplicity of a given root can be higher than 1, so that it corresponds to more generators

associated to that root. The solutions with multiplicity zero, that is the ones ruled out by

the Serre relations, are very rare as can be seen from the tables of refs. [42, 27].

It is convenient to swap the Dynkin indices pj for the indices qj given by

qj = p11−j (2.11)

in order to make more transparent the relation between fields and generators. We recall

the generators of E11 that occur for the first three levels [24]. The level zero generators

correspond to the generators Ka
b of A10. At level one we have

Rabc, l = 1, q3 = 1 , (2.12)

at level two

Ra1...a6 , l = 2, q6 = 1 , (2.13)

and at level three

Ra1...a8,b, l = 3, q1 = 1, q8 = 1 . (2.14)

At level three we also find Ra1...a9 , q9 = 1, but this generator has multiplicity zero and so

does not actually occur in the E11 algebra. E11 is defined as the multiple commutators of

its Chevalley generators, subject to the Serre relations. The multiple commutators of the

level zero Chevalley generators lead to the generators Ka
b of SL(11, R), while the multiple

commutators of these with the level one Chevalley generator lead to Rabc of eq. (2.12).

All the other positive level generators are then found from multiple commutators of Rabc

subject to the Serre relation, and the level is the number of times the generator Rabc occurs

in the commutators. This implies that the generators at level l have 3l upper indices. The

same applies to the construction of all the negative root generators, which have 3l lower

indices when written as representations of A10, corresponding to negative level.

The non-linear realisation is constructed from a group element of E11 which is subject

to a local transformation that can be used to put the group element in the Borel subgroup.

Technically, the local sub-algebra is the Cartan involution invariant sub-algebra. The Borel

subgroup is the one generated by the Cartan subalgebra and the generators associated with
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the positive roots. As a result, there is a one-to-one correspondence between the fields of

the theory and the generators of E11 with non-negative level. At level zero, this results

in the description of gravity as a non-linear realisation [47, 48], and the level zero field

is therefore the graviton. The generator at level 1 in (2.12) corresponds to the 3-form of

11-dimensional supergravity, the one at level 2 in (2.13) to its 6-form dual, and the one

at level 3 given in (2.14) corresponds to the dual graviton [24]. A generator with qj = 1

has j antisymmetrised indices, and for each non-vanishing Dynkin index qj, the generator

possesses qj blocks of j antisymmetric indices. Therefore a given set of qj’s corresponds

to the A10 irreducible representation determined by a Young Tableaux with a number of

columns equal to
∑

j qj, the column corresponding to each given j having j boxes. For

readers more used to the Dynkin indices pj , the relation of these with the qj’s is given in

eq. (2.11). In the non-linear realisation, such a generator gives rise to a corresponding gauge

field with the same index structure. The sum of all the indices of the fields is thus equal to

3l. This way of associating gauge fields to generators takes account of the possibility that

some fields may have blocks of 11 antisymmetric indices. These can be determined by the

relation

11n +
∑

j

jqj = 3l (2.15)

where n is the number of columns with 11 boxes [41]. In the rest of the paper we will denote

a field with j antisymmetric indices by a suffix j, and the 11-dimensional fields will be also

hatted to distinguish them from the lower dimensional ones. The fields corresponding to

the generators in eqs. (2.12), (2.13) and (2.14) are therefore denoted as

Â3 , Â6 , Â8,1 . (2.16)

We now review the main result of [41], where all the generators of E11 with no 10 or

11 antisymmetric indices were classified. Substituting eq. (2.15) with n = q10 = 0 in (2.9)

one gets

α2 =
1

9





∑

i

i(9 − i)q2
i + 2

∑

i<j

i(9 − j)qiqj



 . (2.17)

The solutions of this equation corresponding to roots are

q3 = 1 q9 = m ,

q6 = 1 q9 = m (2.18)

and

q1 = 1 q8 = 1 q9 = m (2.19)

for any non-negative integer m. The solution q9 = m with all the other Dynkin indices zero

turns out not to be a root because of the Serre relations. The solutions of the form (2.18)

correspond to the infinite dual descriptions of a 3-form in eleven dimension, while the

solutions of the form (2.19) correspond to the infinite dual descriptions of the graviton.

Therefore, the outcome of this analysis is that the adjoint representation of E11 contains

generators corresponding to the infinite possible dual descriptions of the 3-form and the
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D field

10 ĝ1
1

Â3

Â6

Â8,1

8 Â9,3

5 Â9,6

3 Â9,8,1

Table 1: Table listing all the 11-dimensional fields that give rise to propagating forms (i.e. forms of

rank less than D−1) after dimensional reduction. The first column indicates the highest dimension

where these fields give rise to forms.

graviton of eleven-dimensional supergravity, which are the bosonic degrees of freedom of

this theory [5].

In this paper we want to consider the dimensional reduction of the 11-dimensional

fields in the adjoint representation of E11. In particular, we are only interested in the

11-dimensional fields that give rise to forms, i.e. fields with only one set of completely

antisymmetric indices. In D dimensions, we divide the forms in three different groups:

• all the ones of rank less than D − 1, which we call propagating forms because their

field equations propagate degrees of freedom;

• the ones of rank D − 1, whose D-form field strengths are dual to cosmological con-

stants, and are therefore associated to the massive deformations of the corresponding

D-dimensional supergravity;

• the ones of rank D, that have no dynamics and no field equations, but are typically

associated to spacetime-filling branes.

The derivation makes use of the fact that a field of the form Âp,q can give rise to a form after

compactification only if all the p’s or all the q’s are internal indices. This generalises to the

case in which there are more than two sets of antisymmetric indices. For example, a form

in three dimensions can only arise from fields that have one set of 9, 10 or 11 antisymmetric

indices or no sets of indices of this kind, because a maximum of 8 antisymmetric indices

can be internal.

The forms of the first type can only arise from the fields that were considered in [41],

corresponding to the solutions (2.18) and (2.19). In particular, the only fields that give rise

to forms for any dimension higher than 2 are listed in table 1. All the other fields considered

in [41] have at least two sets of 9 antisymmetric indices, and so they can generate forms

only in two dimensions.

The D − 1 forms in D dimensions can arise from the fields of table 1, as well as from

field that have one set of 10 antisymmetric indices in 11 dimensions. Therefore, in order

to determine all the possible D − 1-forms that arise in any dimension higher than 2, we

have to classify all the generators of E11 that have n = q9 = 0 and q10 = 1 in eq. (2.15).
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D field

10 Â10,1,1

7 Â10,4,1

5 Â10,6,2

4 Â10,7,1

Â10,7,4

Â10,7,7

3 Â10,8

Â10,8,2,1

Â10,8,3

Â10,8,5,1

Â10,8,6

Â10,8,7,2

Â10,8,8,1

Â10,8,8,4

Â10,8,8,7

Table 2: Table listing all the fields containing one set on 10 antisymmetric indices giving rise to

forms in D dimensions, the first column indicating the highest dimension where this occurs.

Indeed, there can not be any set of 11 antisymmetric indices, and one can only allow for

one set of 10 antisymmetric indices. Since all the other sets of indices have to be internal

after dimensional reduction, and we are interested in compactifications to three dimensions

and above, we exclude the possibility that there is also any set of 9 antisymmetric indices.

Substituting n = q9 = 0, q10 = 1 in eq. (2.9) one gets

α2 =
1

9



−10 +
∑

i

i(9 − i)q2
i − 2

∑

i

iqi + 2
∑

i<j

i(9 − j)qiqj



 . (2.20)

We determine all the possible solutions of eq. (2.10) using this expression for α2. Since

this expression is bounded from below, there are only a finite number of solutions, and

after substituting in (2.20) a few values for qi’s, the reader can see how one can proceed by

inspection. Not all these solutions actually correspond to roots, but it turns out that the

multiplicity of all the solutions that we find has been derived in the literature [42]. There

are no roots of this type with multiplicity higher than 1, and there are only two solutions

corresponding to multiplicity zero, namely q2 = q10 = 1 (level 4) and q5 = q10 = 1 (level

5). The compete set of fields that we find is listed in table 2.

Finally, in order to determine all the possible D-forms arising after dimensional reduc-

tion, in addition to the ones arising from the fields in tables 1 and 2, one has to classify all

the generators with n = 1 and q10 = q9 = 0 in eq. (2.15). Indeed, only one set of 11 indices

is allowed, and once this is done, we have to restrict the fields to not having 10 or 9 indices

if we want to generate forms after compactification. Substituting n = 1, q10 = q9 = 0 in
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D field µ

10 Â11,1 1

8 Â11,3,1 1

7 Â11,4 1

Â11,4,3 1

6 Â11,5,1,1 1

5 Â11,6,1 2

Â11,6,3,1 1

Â11,6,4 1

Â11,6,6,1 1

Â11,7,2,1 1

Â11,7,3 2

Â11,7,4,2 1

Â11,7,5,1 1

Â11,7,6 2

Â11,7,6,3 1

Â11,7,7,2 1

Â11,7,7,5 1

Table 3: Table listing all the fields containing one set on 11 antisymmetric indices giving rise to

forms in D dimensions. The first column indicates the highest dimension where this occurs, while

the last column indicates the multiplicity of the field.

eq. (2.9) one gets

α2 =
1

9



−22 +
∑

i

i(9 − i)q2
i − 4

∑

i

iqi + 2
∑

i<j

i(9 − j)qiqj



 . (2.21)

This expression is bounded from below, and therefore there are a finite number of solutions

of eq. (2.10). We determine all the possible solutions of eq. (2.10) using this expression for

α2, but it turns out that not for all the solutions the corresponding multiplicity is known.

All the solutions of which we do not know the multiplicity have q8 ≥ 1, and thus the

corresponding fields would give rise to D-forms only for D = 3. Consequently, we are able

to classify all the possible solutions, with the corresponding multiplicity, for any dimension

greater than 3. The result of this analysis is shown in table 3, whose last column denotes

the multiplicity of the field. We leave the classification of the 3-forms in 3 dimensions as

an open project.

As is evident from the above, the higher level fields contained in the non-linear reali-

sation of E11 generically have mixed symmetry. One may expect that each block of indices

has associated with it a local gauge transformation and this should also apply to blocks

of 11 indices. Writing the field with 3l indices incorporates the correct gauge transforma-

tions. We note that raising and lowering with the ǫ symbol and then interpreting the gauge

transformations would lead to different results. In this respect, a field with a block of 11
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indices carries the corresponding gauge transformations as so does not possess an invariant

field strength, and as such can not lead to a propagating degree of freedom.

3. Listing of forms in lower dimensions

Before considering each dimension separately, in this section we summarise the results,

which are collected in table 5 at the end of this paper. From the dimensional reduction of

the fields in tables 1,2 and 3, we determine all the forms that arise in any dimension higher

than three, as well as the 1-forms and 2-forms in three dimensions. As already noticed,

the same results can be found by using the E11 non-linear realisation corresponding to the

dimension of interest, that is taking the appropriate gravity line. In each dimension, E11

decomposes in SL(D, R)⊗G, where the first group corresponds to the non-linear realisation

of gravity, and the second is the internal symmetry of the given supergravity theory. In all

the E11 Dynkin diagrams drawn in this paper, figures 1-10, SL(D, R) corresponds to the

horizontal line, while G corresponds to the Dynkin diagram contained in the box. Denoting

by rn the representation of G to which the n-forms belong in a given dimension D less

than 10, one can see from table 5, using the decomposition rules of [49], that

r1 ⊗ rn ⊃ rn+1 . (3.1)

This is a completely general result from E11, and it says that it any dimension lower than

10 the 1-forms are the basic building blocks of the algebra. More technically, the Chevalley

generators are contained in the gravity sector, the internal symmetry algebra and the 1-

forms, and as such these must generate the full E11 algebra. This is transparent if one

looks at the corresponding Dynkin diagrams.

The propagating forms (i.e. the forms of rank less than D−1) all originate from table

1. For all the forms of rank less than D − 2 one has

rn = (rD−2−n)∗ . (3.2)

This allows the duality relation of the corresponding fields. Indeed, the field strengths of

the n-forms and the D − 2 − n-forms in D dimensions are related by

Fn+1 = ∗FD−n−1 , (3.3)

and since the ∗ operator also contains the charge conjugation in the internal sector, this

leads to eq. (3.2). In even dimension, the field-strengths of the forms of rank D
2 − 1 satisfy

self-duality relations. Finally, The forms of rank D − 2, which are dual to scalars, always

belong to the adjoint of G. Since the scalars parametrise the manifold G/H, with H the

maximal compact subgroup of G, so that only dimG − dimH scalars propagate, there are

dimH field-strengths of these D − 2-forms that vanish identically. This result was derived

from supersymmetry in [34, 35] in the 10-dimensional IIB case.

Observe that in any dimension above three, the number of scalars is determined by

the formula

scalarsD = scalarsD+1 + 1 + dim rD+1

1
, (3.4)
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where rD+1

1
is the representation of the 1-forms in D + 1 dimensions. This is due to the

fact that the scalars arise from the scalars, the metric and the 1-forms in one dimension

higher. In three dimensions this formula has to be replaced by

scalars3 = scalars4 + 2 + dim r4

1 , (3.5)

where one extra scalar comes from the compactification of the four-dimensional dual gravi-

ton A1,1. This is in agreement with the well-known fact that in three dimensions the vector

arising from the four-dimensional graviton gives rise to an extra scalar after duality, but

the difference is that E11 encodes automatically all the duality relations. The same result

can of course be seen as arising from 11 dimensions, where the 3-form Â3 gives rise to

scalars in D = 8 and below, the 6-form Â6 in D = 5 and below, and the dual graviton

Â8,1 only in D = 3. To summarise, once all the duality relations are taken into account,

the results we find reproduce the well-known field content of all the maximal supergravity

theories.

The forms of rank D−1 originate from tables 1 and 2. These fields have a D-form field-

strength, and are therefore dual to constants, that are interpreted as mass deformations.

We determine the representation of these forms in any dimension. This corresponds to the

representation of the most general mass deformation of a gauged maximal supergravity, and

indeed we show that our results precisely agree with the classification of all the possible

deformations of maximal supergravities in any dimension [20]. In [28, 29] it was shown

that the massive IIA theory [14] can be accounted for by introducing a 9-form, whose

field-strength is dual to Romans’ cosmological constant. The resulting supersymmetry

algebra [31] gives the supersymmetry algebra of massless IIA [1] in the limit in which the

cosmological constant vanishes. In [30, 27] it was shown how the E11 algebra corresponding

to IIA automatically encodes a 9-form and thus the cosmological constant of Romans. In

fact the Romans massive IIA theory has an 11-dimensional origin and the 9-form results

from the dimensional reduction of the field Â10,1,1 in table 2 [50]. Our results show that

this way of determining the masses is completely general, and, most remarkably, that any

massive maximal supergravity theory has an 11-dimensional origin. If the D − 1-form

arises from one of the fields in table 1, that is the 3-form, the metric and their duals, then

the resulting massive supergravity can be derived as a compactification of the traditional

11-dimensional supergravity theory. However, if the originating field is not in table 1,

then the corresponding massive supergravity does not arise from a compactification of the

traditional 11-dimensional supergravity, but it is a compactification of the 11-dimensional

E11 non-linear realisation. Similar statements apply to the E11 formulation of the IIB

theory, and one can find that the originating field sometimes belongs to the traditional

fields of the IIB theory plus their duals, but not of the traditional 11-dimensional theory.

More generally, the gauged supergravities that are known to have a higher dimensional

origin in terms of the traditional formulations of supergravity theories correspond to mass

parameters generated by the supergravity fields or their duals in the dimension of origin.

As an example, the mass parameter corresponding to the SO(6) gauged supergravity in

five dimensions [15] can be shown to have a IIB supergravity origin, while it corresponds
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to the field Â10,1,1 from the 11-dimensional perspective. This agrees with the fact that the

five-dimensional theory arises from an S5 compactification of IIB [51].

We finally consider the D-forms that arise in D dimensions. These come from the

dimensional reduction of all the fields in tables 1, 2 and 3. The 10-dimensional IIA and

IIB cases were determined in [27] from E11, and in [40, 36] imposing the closure of the

supersymmetry algebra. Not only their number agrees precisely, but also the corresponding

gauge algebra [37]. We determine the representations of these forms for any dimension

greater than 3. None of these results was known in the literature for dimension lower than

10. As one can see from table 3, some of the fields involved in this computation have

multiplicity 2. This turns out to be essential for the D-forms to collect in representations

of the internal symmetry group G. Although these fields are not propagating, they are

in general associated to spacetime-filling branes. Spacetime-filling D-branes are a basic

ingredient for the consistency of orientifold models, and we believe that the classification

or the representations to which these D-branes belong will turn out to be relevant for

a deeper understanding of non-perturbative string theory and M-theory. In [52] it was

shown that κ-symmetry of the effective action of D9-branes in IIB implies that the charge

of such branes, belonging to the quadruplet, have to lie in a particular conjugacy class

that identifies a non-linear doublet inside the quadruplet. This is also essential in order

to introduce a world-volume vector in the effective action [53]. It would be interesting to

perform the same analysis in lower dimensions.

4. Maximal supergravities in various dimensions

In this section we determine all the forms that arise from the non-linear realisation of E11

in any dimension. We consider each dimension separately, starting from the case of D = 10.

For any dimension we determine the propagating fields, as well as all the possible mass

deformations, that arise as D−1-forms, whose D-form field strengths being dual to masses.

We collect all the forms as representations of the internal symmetry group G of the maximal

supergravity under consideration. The spectrum and all the mass deformations that we find

are in perfect agreement with the literature. We also determine, for any dimension greater

than 3, all the D-forms. Although these objects are non-propagating, they are associated

to spacetime-filling branes, that play a crucial role in the construction of orientifold models.

We show how these forms are grouped in representations of the internal symmetry group.

Apart from the ten-dimensional case, these results were previously unknown. For any

dimension we show the corresponding E11 Dynkin diagram, where the horizontal nodes

are associated to gravity. In this way of drawing the diagram, it is transparent how the

internal symmetry arises in a given dimension: it corresponds to the nodes that are not

connected to the gravity ones.

How the fields that occur in the dimensional reduction of maximal supergravity theo-

ries correspond to the Dynkin diagram of the corresponding En symmetries was discussed

in [54], where it was also briefly noted that if one did this for all the fields in all the dimen-

sionally reduced theories then it was natural to consider a rank eleven algebra associated

with the dimensionally reduced theory. However, at no point was it suggested that this
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Figure 2: The E11 Dynkin diagram corresponding to 10-dimensional IIA supergravity.

algebra could correspond to a symmetry in the eleven or ten dimensional theories. Further

references on symmetries which appear on dimensional reduction and related matters can

be found in [24, 55].

D=10. Type-IIA supergravity arises as a dimensional reduction of 11-dimensional su-

pergravity on S1. The bosonic sector of the theory contains a scalar parametrising R
+,

the metric, a vector, a 2-form and a 3-form. According to E11, these objects appear in the

algebra together with an infinite chain of dual fields. So for instance the 1-form appears

together with a 7-form, as well as an infinite chain of A8,8,...,8,1 and A8,8,...,8,7 fields, all

related by dualities. All these fields arise from dimensional reduction of the 11-dimensional

field content deduced from E11. The Dynkin diagram associated to this theory is shown in

figure 2.

Let us first consider all the forms associated to propagating fields. The result is

ĝ1
1 → A1 , φ

Â3 → A3 , A2

Â6 → A6 , A5

Â8,1 → A8 , A7 , (4.1)

corresponding to the known propagating forms and their dual forms.

We now consider the 9 and 10-forms. From the first field in table 2 one gets

Â10,1,1 → A9 (4.2)

while from the same field and from the first field in table 3 one obtains two 10-forms,

Â10,1,1 → A10 Â11,1 → A′
10 . (4.3)

The field-strength of the 9-form is dual to Romans’ cosmological constant. The fact that

E11 can account for the mass deformation of Romans was shown in [30, 27], and the higher

dimensional origin of the 9-form of eq. (4.2) given in [50]. In [40] it was shown that the

supersymmetry algebra of IIA precisely reproduces the predictions of E11 here summarised,

and in particular that there are two 10-forms.

Before proceeding to analyse the lower dimensional cases, it is important to notice that

the E11 symmetry is compatible with a different 10-dimensional background, corresponding

to type-IIB supergravity [26], describing in the bosonic sector the metric, two scalars
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Figure 3: The E11 Dynkin diagram corresponding to 10-dimensional IIB supergravity. The internal

symmetry group is SL(2, R).

parametrising the manifold SL(2, R)/SO(2), two 2-forms and a self-dual 4-form [2]. The

Dynkin diagram associated to the IIB background is shown in figure 3. It is manifest

from the diagram that the theory possesses an SL(2, R) internal symmetry, and that the

2-forms belong to the 2 of such group. The propagating forms that arise are two scalars,

a doublet of 2-forms and of dual 6-forms, as well as a self-dual 4-form, which is a singlet

of SL(2, R) and a triplet of 8-forms dual to the scalars. The 8-forms are therefore in the

adjoint of SL(2, R), and the duality relation between the 8-forms and the scalars is such

that a combination of the three 9-form field-strengths vanishes identically. As already

anticipated, this is a completely general result: the D − 2-forms dual to the scalars are in

the adjoint of the internal symmetry group G, while the scalars parametrise the manifold

G/H. Therefore the corresponding duality relation puts to zero dimH D − 1-form field

strengths. E11 also predicts the presence of a quadruplet and a doublet of 10-forms. In [36]

it was shown that these are precisely the forms contained in the IIB supersymmetry algebra.

It was then shown that the gauge transformations derived in [36] imposing the closure of

the supersymmetry algebra are exactly as predicted by E11 [37].

Although the dimensional reductions of the IIA and IIB spectrum arising from E11 are

the same, we list in table 4 the fields of the IIB spectrum that give rise to forms in nine

and eight dimensions [27]. As we will see, this will resolve some ambiguities in assigning

representations to the fields in eight dimensions. One can see from table 4 that the fields

with an even number of α indices have 4,8,12. . . spacetime indices, while the ones with an

odd number of α indices have 2,6,10. . . spacetime indices. This result is completely general,

and it is due to the fact that the generators are constructed from multiple commutators of

Rab,α.

D=9. The three scalars of maximal massless 9-dimensional supergravity parametrise the

manifold R
+×SL(2, R)/SO(2). The theory also contains the metric, a doublet and a singlet

of vectors, a doublet of 2-forms and a 3-form. The E11 Dynkin diagram corresponding to a

9-dimensional background is shown in figure 4. From the diagram one can indeed see that

the non-abelian internal group is SL(2, R), and there are a doublet and a singlet of vectors.

This symmetry can either be seen as arising from 11 dimensions, with the last two nodes

on the left of the diagram of figure 1 being associated with the coordinates of a two-torus,
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D IIB fields

9 g1
1

Aα
2

A4

Aα
6

A
(αβ)
8

A7,1

Aα
10

A
(αβγ)
10

Aα
9,1

8 Aα
8,2

A9,2,1

A
(αβ)
10,2

A10,2

A′
10,2

Aα
10,2,2

Table 4: Table listing all the fields of IIB that can give rise to forms in 9 and 8 dimensions, with

the first column denoting the highest dimension for which this occurs. The upstairs indices are

indices of SL(2, R), α = 1, 2.

i i i i i i i i

i

i

¡
¡

¡¡

i

Figure 4: The E11 Dynkin diagram corresponding to 9-dimensional supergravity. The non-abelian

part of the internal symmetry group is SL(2, R).

or as arising from IIB in 10 dimensions, with the last node of figure 3 corresponding to the

coordinate of the circle.

We now list all the forms that arise from the 11-dimensional fields of tables 1,2 and

3 as representations of SL(2, R), denoting as usual by rn the representation to which the

n-forms belong. The result is

r1 = 2 ⊕ 1 r2 = 2 r3 = 1 r4 = 1 r5 = 2

r6 = 2 ⊕ 1 r7 = 3 ⊕ 1 r8 = 3⊕ 2 r9 = 4⊕ 2 ⊕ 2,
(4.4)

where in particular the 8-forms come from Â8,1 in table 1 (doublet) and Â10,1,1 in table 2

(triplet), while the 9-forms come from Â10,1,1 (quadruplet and first doublet) and Â11,1 in
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table 3 (second doublet). It is straightforward to verify that the dimensional reduction of

the IIB fields of table 4 gives rise to the same forms in 9 dimensions. In particular, the

fields A
(αβ)
8 and Aα

9,1 give rise to the triplet and the doublet of 8-forms, while Aαβγ
10 , Aα

10

and Aα
9,1 give rise to the quadruplet and the two doublets of 9-forms.

One can check that eq. (3.1) holds, and that

rn = r7−n , (4.5)

which is in agreement with eq. (3.2) since SL(2, R) is pseudo-real. As already antici-

pated, the 7-forms, dual to the scalars, belong to the adjoint representation. Finally, the

spacetime-filling forms belong to the 4⊕ 2⊕ 2 of SL(2, R). Like in IIB, the form associated

to the spacetime-filling D-brane in 9 dimensions belongs to the quadruplet. In IIB it was

shown that κ-symmetry of the effective action imposes a constraint on the charges, giving

rise to a non-linear doublet of branes out of the quadruplet [52]. It would be interesting to

see the same result occurring in 9 dimensions.

We now want to make contact with what is known about gauged supergravities in 9

dimensions. Using eq. (4.4), E11 predicts that all the possible gauged maximal supergravi-

ties in 9 dimensions are generated by a mass parameter in the 3 ⊕ 2 of SL(2, R). In [17] all

the possible massive deformations of maximal 9-dimensional supergravities were classified.

The analysis was performed taking into account not only the gauging of the symmetries

of the 10-dimensional lagrangians, but also the gauging of the scaling symmetry of the

equations of motions in 10 dimensions (so called “trombone” symmetries), as well as the

dimensional reduction of the massive IIA theory obtained by gauging the scaling symmetry

of the 11-dimensional field equations [56]. The result is that the independent mass param-

eters of 9-dimensional gauged supergravity belong to the 3⊕ 2⊕ 2 ⊕ 1 of SL(2, R). The

triplet can be seen as arising from the Scherk-Schwarz reduction of IIB, while one of the

two doublets corresponds to the gauging of the R
+ symmetry of IIA (and its S-dual). The

other doublet and the singlet arise from the gauging of the “trombone” symmetries, and as

such they do not admit a lagrangian description. The outcome of our analysis is that the

classification of gauged supergravities in terms of the D − 1-forms arising from E11 only

accounts for the first two types of deformations, and we do not attempt here to provide an

E11 origin for the other massive theories. We will see that this result is completely general:

in any dimension D, all the massive deformations of maximal supergravities which have a

lagrangian description are in correspondence with the D − 1-forms contained in E11 in a

D-dimensional background.

D=8. The bosonic sector of maximal massless 8-dimensional supergravity [57] contains

seven scalars parametrising the manifold SL(3, R)/SO(3) × SL(2, R)/SO(2), the metric, a

vector in the (3,2) of the internal symmetry group SL(3, R) × SL(2, R), a 2-form in (3,2)

and a 3-form which is a singlet of the internal symmetry group. The E11 Dynkin diagram

corresponding to this theory is shown in figure 5. From the diagram it is manifest why

this is the first dimension for which there is a non-abelian enhancement in the internal

symmetry.
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Figure 5: The E11 Dynkin diagram corresponding to 8-dimensional supergravity. The internal

symmetry group is SL(3, R) × SL(2, R).

We now want to determine all the forms that E11 predicts in 8 dimensions. As usual,

this theory can be obtained from a dimensional reduction of either the 11-dimensional or

the IIB theory. From 11 dimensions, there is a manifest SL(3, R) symmetry arising, and

therefore if one reduces the fields in tables 1,2 and 3, the resulting forms are automatically

collected in representations of this group. Similarly, from IIB the manifest symmetry is

SL(2, R)× SL(2, R), and the dimensional reduction of the fields in table 4 indeed gives rise

to forms carrying representations of this group in 8 dimensions. It turns out that from the

IIB perspective, the SL(2, R) group that gets enhanced to SL(3, R) is the one corresponding

to the internal symmetry of the ten dimensional theory. Using this, and the fact that the 8

dimensional theory is unique, one determines the representations of all the forms predicted

by E11 in 8 dimensions. We denote the representation carried by the n-form by rn. The

1-forms arise from the 11-dimensional fields ĝ1
1 and Â3 in table 1, giving two fields in the

3 of SL(3, R), or equivalently from the IIB fields g1
1 and Aα

2 of table 4, giving a (1,2)

and a (2,2) of SL(2, R) × SL(2, R). The fact that the two dimensional reductions are the

same implies r1 = (3,2) of SL(3, R) × SL(2, R). Using the same arguments, one obtains

the representations of all the forms in the theory. In particular, the 7-forms arise from the

11-dimensional fields of tables 1 and 2

Â8,1 → 6 ⊕ 3 Â9,3 → 3 Â10,1,1 → 6 , (4.6)

or from the IIB fields of table 4

A
(αβ)
8 → (3,2) A7,1 → (1,2) Aα

9,1 → (2,2)

Aα
8,2 → (2,2) A9,2,1 → (1,2) , (4.7)

where in eq. (4.6) the fields are representations of SL(3, R) while in eq. (4.7) they are

representations of SL(2, R) × SL(2, R). This leads to r7 = (6,2) ⊕ (3,2) of SL(3, R) ×

SL(2, R). Similarly, the 8-forms arise from the 11-dimensional fields of tables 1, 2 and 3

Â8,1 → 3 Â9,3 → 3 Â10,1,1 → 3 ⊕ 15

Â11,1 → 3 Â11,3,1 → 3 , (4.8)
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or from the IIB fields of table 4

A
(αβ)
8 → (3,1) Aα

10 → (2,1) A
(αβγ)
10 → (4,1)

Aα
9,1 → (2,3) ⊕ (2,1) Aα

8,2 → (2,1)

A9,2,1 → (1,3) ⊕ (1,1) A
(αβ)
10,2 → (3,1)

A10,2 → (1,1) A′
10,2 → (1,1) Aα

10,2,2 → (2,1)

(4.9)

and collecting the results in representations of SL(3, R) × SL(2, R) this gives r8=(15,1)

⊕(3,3)⊕(3,1) ⊕ (3,1). The final result is

r1 = (3,2) r2 = (3,1) r3 = (1,2) r4 = (3,1)

r5 = (3,2) r6 = (8,1) ⊕ (1,3) r7 = (6,2) ⊕ (3,2)

r8 = (15,1) ⊕ (3,3) ⊕ (3,1) ⊕ (3,1) , (4.10)

One can see that the spectrum is in perfect agreement with eq. (3.2), and therefore with

the general rule that all the fields in E11 satisfy duality relations. The doublet of 3-forms

satisfies a self-duality relation, in agreement with the fact that a singlet of 3-forms is present

in the supergravity multiplet.

The 7-forms are associated to the massive deformations, that is to gauged maximal

supergravities. Therefore, E11 predicts that any massive deformation of 8-dimensional

supergravity that admits a lagrangian description corresponds to a mass parameter in the

(6,2) ⊕ (3,2). The most general gauged maximal supergravity theories in 8 dimensions

were obtained in [18] using the Bianchi classification of group manifolds, but these results

are not formulated in terms of representations of SL(3, R) × SL(2, R). We believe that

this classification is in agreement with E11 once one considers the theories that admit a

lagrangian description, like in nine dimensions. From eq. (4.9) one can see that the fields

associated to the spacetime filling D-branes in 8 dimensions belong to the (15,1).

D=7. The multiplet describing massless maximal supergravity theory in 7 dimensions [58]

has a bosonic sector made of 14 scalars parametrising SL(5, R)/SO(5), the metric, a 1-form

in the 10 and a 2-form in the 5 of SL(5, R). The E11 Dynkin diagram corresponding to the

7-dimensional theory is shown in figure 6. One can see from the diagram that the 1-forms

carry two antisymmetric indices of SL(5, R).

The analysis of all the forms that result from the dimensional reduction of the fields in

tables 1,2 and 3 proceeds like in the cases already considered, taking care of the fact that

the forms naturally arise as representations of SL(4, R). Since the internal symmetry group

is SL(5, R), the individual SL(4, R) representations of a given form must collect up into

SL(5, R) representations. Starting from the 1-form, one has, in terms of representations of

SL(4, R),

ĝ1
1 → 4 Â3 → 6 , (4.11)

and 4 ⊕ 6 = 10 of SL(5, R). Similarly, the 2-forms come from

Â3 → 4 Â6 → 1 , (4.12)
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Figure 6: The E11 Dynkin diagram corresponding to 7-dimensional supergravity. The internal

symmetry group is SL(5, R).

and 4⊕ 1 = 5. Proceeding this way, one obtains all the representations of the propagating

forms from the fields in table 1. In particular, the 5-forms arise from

Â6 → 4 Â8,1 → 15 ⊕ 1 Â9,3 → 4 , (4.13)

and 1 ⊕ 4⊕ 4⊕ 15 = 24, which is the adjoint of SL(5, R). We now determine the 6-forms,

resulting from the fields in tables 1 and 2. The result is

Â6 → 1 Â8,1 → 4 ⊕ 20

Â9,3 → 6 ⊕ 10 Â10,1,1 → 10 Â10,4,1 → 4 , (4.14)

and since 1 ⊕ 4⊕ 10 = 15 and 4⊕ 6 ⊕ 10⊕ 20 = 40, this implies r6 = 15 ⊕ 40. Finally,

we determine the 7-forms, resulting from the fields in tables 1, 2 and 3. We have

Â8,1 → 6 ⊕ 10 Â9,3 → 4⊕ 20

Â10,1,1 → 4 ⊕ 36 Â10,4,1 → 1 ⊕ 15

Â11,1 → 4 Â11,3,1 → 15

Â11,4 → 1 Â11,4,3 → 4 , (4.15)

which in terms of representations of SL(5, R) becomes r7 = 5⊕ 45 ⊕ 70.

The complete result is

r1 = 10 r2 = 5 r3 = 5 r4 = 10 r5 = 24

r6 = 15 ⊕ 40 r7 = 5⊕ 45 ⊕ 70 . (4.16)

The fact that all the possible gaugings of 7-dimensional maximal supergravity are

encoded in a mass parameter belonging to the 15⊕ 40 of SL(5, R) was shown in [19].
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Figure 7: The E11 Dynkin diagram corresponding to 6-dimensional supergravity. The internal

symmetry group is SO(5, 5).

Given that the masses are related by dualities to the field strengths of the 6-forms, they

should indeed belong to the representation r∗
6
, and this is in complete agreement with our

results.

The well-known SO(5)-gauged maximal supergravity theory in 7 dimensions [59], cor-

responding to 11-dimensional supergravity compactified on S4, is a particular case of the

class of theories corresponding to a mass parameter which is a singlet of SO(5). To find such

a singlet, one looks at the particular form of the representations contained in r6 and one

realises that it can only come from the 15, which is a symmetric second rank tensor [19].

From eq. (4.14) it turns out that the SO(5) singlet in the 15 can only arise from the fields

Â6 and Â9,3, which are (duals of) supergravity fields. By contrast, the fields Â10,1,1 and

Â10,4,1, which are not traditional supergravity fields in 11 dimensions, can only give rise to

massive deformations in the 40.

D=6. We now consider the six-dimensional case. The symmetry of the massless maximal

supergravity theory in 6 dimensions [60] is SO(5, 5), and the bosonic sector of the theory

describes 25 scalars parametrising SO(5, 5)/[SO(5) × SO(5)], the metric, a 1-form in the

16 and a 2-form in the 10, whose field strength satisfies a self-duality condition. The

E11 Dynkin diagram corresponding to the 6-dimensional background in shown in figure 7.

From the diagram it is manifest that the 1-forms belong to the spinor representation.

We repeat here the same analysis that was performed in the higher dimensional cases,

listing all the forms arising from the dimensional reduction as representations of SL(5, R),

and then showing that for each form these representations collect in representations of
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SO(5, 5). The 1-forms arise from the first three fields in table 1,

ĝ1
1 → 5 Â3 → 10 Â6 → 1 , (4.17)

which results in 10 ⊕ 5 ⊕ 1 = 16 = r1, following [49]. The 2-forms arise from

Â3 → 5 Â6 → 5 , (4.18)

and 5 ⊕ 5 = 10 = r2. The 3-forms dual to the vectors are generated from

Â3 → 1 Â6 → 10 Â8,1 → 5 , (4.19)

thus giving r3 = 16. The 4-forms, dual to the scalars, arise from

Â6 → 10 Â8,1 → 24 ⊕ 1 Â9,3 → 10 , (4.20)

which results in r4 = 45, which is the adjoint of SO(5, 5).

The 5-forms whose field strengths are dual to masses, originate form the same 11-

dimensional fields as did the 4-forms, giving in this case the representations

Â6 → 5 Â8,1 → 5⊕ 45 Â9,3 → 10 ⊕ 40 , (4.21)

as well as from the first two fields in table 2, giving the representations

Â10,1,1 → 15 Â10,4,1 → 24 . (4.22)

Summing up all the representations of eqs. (4.21) and (4.22) one gets r5 = 144 of SO(5, 5).

Finally, we consider the 6-forms. These arise from the fields in eqs. (4.21) and (4.22), giving

rise to the representations

1 10 ⊕ 40 5⊕ 45 ⊕ 50 5 ⊕ 70 5 ⊕ 45⊕ 70 (4.23)

respectively, as well as from the first five fields in table 3, giving rise to the representations

5 45 5 40 15 , (4.24)

and summing all up one gets r6 = 10 ⊕ 126 ⊕ 320.

Summarising, we get

r1 = 16 r2 = 10 r3 = 16 r4 = 45

r5 = 144 r6 = 10 ⊕ 126 ⊕ 320 . (4.25)

The fact that the most general gauged maximal six-dimensional supergravity arises from

a mass deformation belonging to the 144 of SO(5, 5) has been shown in [20]. Our results

are therefore in complete agreement with the literature.
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Figure 8: The E11 Dynkin diagram corresponding to 5-dimensional supergravity. The internal

symmetry group is E6(+6).

D=5. We now consider the five-dimensional case. One can see from figure 8 the appear-

ance of the exceptional group E6(+6), which is the maximally non-compact version of E6.

The bosonic sector of maximal massless supergravity theory in five dimensions [7, 16]

contains 42 scalars parametrising the manifold E6(+6)/USp(8), the metric and a 1-form in

the 27. These fields and their duals result from the dimensional reduction of the first six

fields in table 1. In the dimensional reduction, the fields naturally arise as representations

of SL(6, R), and using the decomposition rules of [49] one can see that for each form the

representations collect in representations of E6. The 1-forms come from ĝ1
1, Â3 and Â6,

giving the representations

6 15 6 , (4.26)

thus resulting in r1 = 27 of E6. Their dual 2-forms come from Â3, Â6 and Â8,1, giving

6 15 6 , (4.27)

which gives r2 = 27. The 3-forms dual to the scalars arise from the Â3, Â6, Â8,1, Â9,3 and

Â9,6, and give

1 20 1 ⊕ 35 20 1 (4.28)

respectively. This corresponds to the 78, which is the adjoint of E6.

We now consider the 4-forms, whose field strengths are dual to masses. They arise

from the fields Â6, Â8,1, Â9,3 and Â9,6 in table 1, as well as from the first three fields in

– 25 –



J
H
E
P
0
7
(
2
0
0
7
)
0
6
3

table 2. The table 1 fields give the representations

15 6 ⊕ 84 15 ⊕ 105 6 , (4.29)

while those in table 2 give

21 84 15 . (4.30)

The overall sum gives r4 = 351 of E6.

Finally, we analyse the 5-forms. These arise from the same 11-dimensional fields as

did the 4-forms, giving respectively the representations

6 15 ⊕ 105 6 ⊕ 84⊕ 210 15

6⊕ 120 15 ⊕ 105 ⊕ 384 6⊕ 84 , (4.31)

as well as from the first nine fields in table 3, giving

6 105 15 210 120

6 ⊕ 6 105 15 6 . (4.32)

This results in r5 = 27 ⊕ 1728. Observe that the fact that the sixth field in table 3 has

multiplicity 2 is crucial in order to collect the fields in representations of E6. Summarising

the results, we have found

r1 = 27 r2 = 27 r3 = 78

r4 = 351 r5 = 27 ⊕ 1728 . (4.33)

The fact that the most general five-dimensional gauged maximal supergravity results from

a mass deformation in the 351 of E6 has been shown in [21]. This contains the case in

which the symmetry SO(6) is gauged [15], which corresponds to the reduction of IIB on

S5 [51]. The resulting AdS5 × S5 background is the near-horizon geometry of the solution

corresponding to a stack of D3-branes, and this theory has received a lot of attention in

the context of the AdS/CFT correspondence. The corresponding supergravity arises from

an SO(6) singlet in the 351 deformation. This singlet arises from the 11-dimensional field

Â10,1,1 that contains the 21 of SL(6, R), which is a symmetric second rank tensor. This field

is not a traditional 11-dimensional supergravity field and correspondingly the theory does

not arise from a compactification of 11-dimensional supergravity. On the other hand, one

can show that the 4-forms arising from the dimensional reduction of the IIB fields are such

that the mass parameter which is a singlet of SO(6) corresponds to the compactification of

the traditional supergravity fields in IIB, corresponding to the fact that the five-dimensional

theory has a geometric origin from the perspective of IIB supergravity. In the next section,

when we will show how the gauging originates from the E11 non-linear realisation, we will

concentrate in particular on the five-dimensional case.

D=4. The global symmetry of four-dimensional massless maximal supergravity is E7(+7),

which is the maximally non-compact version of E7. This symmetry rotates electric and

magnetic vectors, and as such it is not a symmetry of the lagrangian, but only of the
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Figure 9: The E11 Dynkin diagram corresponding to 4-dimensional supergravity. The internal

symmetry group is E7(+7).

equations of motion. This is in agreement with E11, in which fields and their magnetic

duals are treated on the same footing, and indeed figure 9 shows that the symmetry E7

arises naturally in a four-dimensional background of E11.

The bosonic field content of the supergravity theory contains 70 scalars parametrising

the manifold E7(+7)/SU(8), the metric and 28 vectors, that together with their magnetic

duals make the 56 of E7. We now classify all the forms arising from the dimensional

reduction of the fields in tables 1,2 and 3. The resulting forms will be representations

of SL(7, R), and as a consequence of the symmetry enhancement, for each form these

representations will collect to representations of E7. The 1-forms arise from ĝ1
1, Â3, Â6

and Â8,1 in table 1, giving the representations

7 21 21 7 , (4.34)

whose sum is the 56 of E7. The 2-forms are dual to the scalars, and arise from the fields

Â3, Â6, Â8,1, Â9,3 and Â9,6 in table 1, resulting in

7 35 48 ⊕ 1 35 7 , (4.35)

which is the 133, that is the adjoint of E7.
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We now consider the 3-forms. The fields contributing from table 1 are the same that

generate the 2-forms, giving the representations

1 35 7 ⊕ 140 21 ⊕ 224 21⊕ 28 (4.36)

as well as the first six fields in table 2, giving

28 224 140 7 35 1 . (4.37)

The collection of these representations is the 912 of E7.

Finally, we consider the 4-forms. These arise from the fields Â6, Â8,1, Â9,3 and Â9,6 in

table 1, plus the first six fields in table 2 and all the fields in table 3. The fields in table 1

give the representations

21 21 ⊕ 224 7 ⊕ 140 ⊕ 588 35 ⊕ 112 , (4.38)

while the fields in table 2 give

7⊕ 189 35 ⊕ 210 ⊕ 1323 48⊕ 392 ⊕ 540 1⊕ 48 35⊕ 210 7 (4.39)

and the fields in table 3 give

7 210 35 784 540 48 ⊕ 48

1323 210 189 1 112 35⊕ 35

588 140 7 ⊕ 7 224 21 21 . (4.40)

The sum of all these representations gives r4 = 133 ⊕ 8645. Like in the five-dimensional

case, it is crucial that some fields in table 3 have multiplicity 2 in order for the 4-forms to

collect in representations of E7. Summarising,

r1 = 56 r2 = 133 r3 = 912 r4 = 133 ⊕ 8645 . (4.41)

In [20] it has been shown that the most general four-dimensional gauged supergravity

corresponds to a mass deformation in the 912 of E7. In order to recover all the known

gaugings from this E7 covariant approach, it was crucial to use a formulation of the theory in

which the vectors and their magnetic duals were treated on the same footing [22]. This is in

complete agreement with our results. A well-known example is the SO(8)-gauged maximal

supergravity theory [13] corresponding to 11-dimensional supergravity compactified on S7.

In order to see which mass parameter one has to turn on in order to gauge an SO(8)

subgroup of E7, one first has to collect the SL(7, R) representations of the 3-forms in

representations of SL(8, R). This is achieved using

36 = 28⊕ 7 ⊕ 1 (4.42)

and

420 = 224 ⊕ 140 ⊕ 35 ⊕ 21 . (4.43)
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In terms of representations of SL(8, R), the 912 of E7 decomposes as

912 = 420 ⊕ 420 ⊕ 36 ⊕ 36 . (4.44)

There are two SO(8) singlets, one in the 36 and one in the 36. The one in the 36 arises from

the fields Â9,6 and Â3, as can be seen from eq. (4.36), which are (dual of) supergravity fields,

in agreement with the 11-dimensional supergravity origin of the four-dimensional theory.

The singlet in the 36 arises from the fields Â10,1,1 and Â10,7,7, showing the presence of a four-

dimensional gauged SO(8) theory with no 11-dimensional supergravity origin. This agrees

with the fact that E7 maps electric fields to magnetic fields, and therefore is not a symmetry

of the lagrangian, but only of the equations of motion. The electromagnetic duality of the

four dimensional theory, corresponding to the IIA/IIB T-duality, maps representations

of SL(8, R) to their complex conjugates. Therefore, the gauged SO(8) theory that does

not seem to have an 11-dimensional geometric origin corresponds to the gauging of the

magnetic fields.

D=3. We finally consider the three-dimensional case. The bosonic sector of massless

maximal supergravity theory in three dimensions [61] describes 128 scalars parametrising

the manifold E8/SO(16) and the metric. We expect that the 1-forms are in the 248

of E8, according to the general rule for which the fields dual to the scalars are in the

adjoint representation. The fact that E11 predicts an E8 symmetry in a three-dimensional

background, as well as the representation carried by the 1-forms, is transparent from the

Dynkin diagram in figure 10.

We now determine all the 1-forms and 2-forms coming from the dimensional reduction

of the fields in tables 1 and 2. These forms naturally carry representations of SL(8, R), and

as a result of the symmetry enhancement these representations can be grouped in repre-

sentations of E8. The 1-forms arise from all the fields in table 1, giving the representations

8 28 56 63 ⊕ 1 56 28 8 , (4.45)

thus resulting in r1 = 248 that is the adjoint of E8, as already anticipated. The 2-forms

come from all the fields in table 1 with the exception of the metric, as well as from all the

fields in table 2. The fields in table 1 generate the representations

8 70 216 ⊕ 8 420 ⊕ 28 168 ⊕ 56 63⊕ 1 , (4.46)

while the fields in table 2 generate

36 504 720 63 504

36 1 168 56 420

28 216 8 70 8 . (4.47)

All these representations collect in r2 = 1⊕ 3875 of E8. Summarising, we have found that

r1 = 248 r2 = 1 ⊕ 3875 . (4.48)
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Figure 10: The E11 Dynkin diagram corresponding to 3-dimensional supergravity. The internal

symmetry group is E8(+8).

We leave the determination of the 3-forms in three dimensions as an open project. Following

eq. (3.1) we expect these to be contained in

r1 ⊗ r2 = 248 ⊕ 248 ⊕ 3875 ⊕ 30380 ⊕ 147250 ⊕ 779247 . (4.49)

Since the vectors are dual to the scalars in three dimensions, the study of gauged

supergravities requires a formulation in which one dualises scalars into vectors. In has

been shown in [23] that the most general gauging arises from a mass deformation in the

1 ⊕ 3875 of E8, and this is once again in agreement with the E11 results.

To conclude this section, we stress that all gauged maximal supergravities possess an

11-dimensional origin within the E11 formulation of the low-energy action of M-theory,

which also provides a prediction for all the spacetime-filling forms allowed in the super-

symmetry algebras of such supergravities in any dimension.

5. Gauging of maximal supergravities as a non-linear realisation

In the previous sections we have classified all possible massive supergravities using E11 and
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at the same time provided a common framework for all such theories. In this section we

will show, in outline, how the E11 non-linear realisation also encodes the dynamics of such

theories and, in particular, we will see how the phenomenon of gauging arises in massive

supergravities. We will concentrate on the five-dimensional case, but our analysis can be

readily generalised to all the other theories. The procedure is similar to the one carried

out in [30], where it was shown that the massive IIA theory of Romans results from a non-

linear realisation. All the gauged supergravities in five dimensions were classified in [21]

and to some extent we will use similar notation in order to facilitate the comparison of the

formulae. However, the latter reference used the supersymmetry of the theory and so the

derivation of their results has little in common with that given here.

The five dimensional massless theory has an internal E6 symmetry and in its E11

formulation the generators corresponding to the forms with the exception of the space-

filling 5-forms are given by

Rα Ra,M Rab
M Rabc,α Rabcd

[MN ] , (5.1)

where Rα, α = 1, . . . , 78 are the E6 generators, and an upstairs M index, M = 1, . . . , 27,

corresponds to the 27 representation, a downstairs M index to the 27 and a pair of antisym-

metric downstairs indices [MN ] correspond to the 351 as the tensor product of 27 ⊗ 27

in the anti-symmetric combination only contains the 351. We write the commutation

relations for the E6 generators in the form

[Rα, Rβ] = fαβ
γRγ , (5.2)

where fαβ
γ are the structure constants of E6. The commutator of these generators with

the 1-form is determined by the fact that the Jacobi identity involving Rα, Rβ and Ra,M

demands that this generator is in a representation of E6, which is in fact the 27 as noted

above, and it is given by

[Rα, Ra,M ] = (Dα)N
MRa,N , (5.3)

where (Dα)N
M are the generators of E6 in this representation and so obey

[Dα,Dβ ]M
N = fαβ

γ(Dγ)M
N . (5.4)

The two form generators are in the 27 representation and so their commutator with the

generators of E6 is given by

[Rα, Rab
M ] = −(Dα)M

NRab
N . (5.5)

This involves the matrix (Dα)M
N in the way that follows from the fact that if we contract

the indices of a 27 with a 27 we find an E6 invariant. The E6 commutator of the Rabc,α is

given by

[Rα, Rabc,β] = fαβ
γRabc,γ . (5.6)

as it is in the adjoint representation while that of the Rabcd
[MN ] generator is given by

[Rα, Rabcd
[MN ]] = −(Dα)M

P Rabcd
[PN ] − (Dα)N

P Rabcd
[MP ] . (5.7)
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The next commutators of the E11 algebra to consider are those of the 1-forms which

yield a 2-form and are given by

[Ra,M , Rb,N ] = dMNP Rab
P , (5.8)

where dMNP is required by the Jacobi identity involving Rα, Ra,M and Rb,N to be an

invariant tensor transforming in the 27⊗27⊗27 representation and so it is also a symmetric

tensor. The commutator of a 1-form with a 2-form generator is a 3-form generator and

the Jacobi identities involving Rα, Ra,N and Rbc
M imply that this is given in terms of the

(Dα)M
N matrix as follows:

[Ra,N , Rbc
M ] = gαβ(Dα)M

NRabc,β , (5.9)

where gαβ is the Killing metric. As mentioned above the 4-form generator is in the 351

representation and as this is the only representation in the anti-symmetric tenor product

of 27 ⊗ 27 it appears on the right-hand side of the commutators of two 2-forms as

[Rab
M , Rcd

N ] = Rabcd
[MN ] , (5.10)

as well as in the commutator of the 1-form with the 3-form,

[Ra,M , Rbcd,α] = SαM [NP ]Rabcd
[NP ] , (5.11)

where SαM [NP ] is an invariant tensor. Using

gβγ(Dα)M
N (Dγ)N

M = kδα
β (5.12)

one can show that the Jacobi identities constrain the invariant tensor SαM [NP ] to satisfy

SαM [NP ] +
1

k
gβγ(DαDβ)Q

MSγQ[NP ] = −
1

k
(Dα)Q

[NdP ]MQ . (5.13)

One can show that the Jacobi identities are also compatible with a 5-form generator in the

27 ⊕ 1728, in agreement with the results of the previous section.

We now want to show how the massive supergravities arise as a non-linear realisation.

The massless maximal five dimensional supergravity is the non-linear realisation of the

above algebra once we include the space-time translations Pa. We will follow the derivation

given in [30] for the case of Romans theory. In order to account for the massive deformations

we now adopt the commutator

[Ra,M , Pb] = δa
b ΘM

αRα ≡ δa
b TN . (5.14)

Since the other form generators are the result of multiple commutators of the 1-form

generators, see eqs. (5.8), (5.9) and (5.11), we may use the Jacobi identities to find the

commutator of Pa with any of the higher form generators. The result for the 2-form

generator Rab
M is

[Rab
M , Pc] = ZMN (δa

c Rb,N − δb
cR

a,N ) , (5.15)
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where

ZMN = dMPQΘP
α(Dα)N

Q = dMPQ(XP )N
Q (5.16)

and X is defined by

(XP )M
N ≡ ΘP

α(Dα)M
N . (5.17)

In deriving eq. (5.15) we have used the identity dMNP dMNQ = δQ
P . Proceeding in the same

way we find the commutators of the 3 and 4-form generators with Pa, which are given by

[Rabc,α, Pd] = −
3

k
(Dα)M

N (XM )N
P δ

[a
d Rbc]

P (5.18)

and

[Rabcd
MN , Pe] = −4ZP [M(Dα)N ]

P δ[a
e Rbcd],α . (5.19)

There are a number of relations that are implied by the Jacobi identities of the gen-

erators. For example the Jacobi identity involving Rab
M , Pc and Pd and the relations

[Pc, Pd] = 0 implies that

ZMNΘN
α = 0 . (5.20)

Writing TN in terms of the commutator of eq. (5.14) and using the Jacobi identities

we find that

[TM , TN ] = fMN
P TP , (5.21)

where the structure constants of the resulting algebra are given by

fMN
P = Θ[M

α(Dα)P
N ] = (X [M )P

N ] , (5.22)

which clearly must satisfy the corresponding Jacobi identity when projected onto ΘM
α,

thus placing more constraints on ΘM
α. As we will shortly see the sub-algebra of E6 that

the TN generate will be the gauged, or local, algebra of the massive supergravity.

The constraints on ΘM
α and ZMN we find agree with those found using supersymmetry

of reference [21]. Clearly, there are more Jacobi identities and these should lead to all the

constraints of reference [21]. In particular, ZMN in eq. (5.16) has to be antisymmetric, thus

belonging to the 351 of E6. The object Θ, which is often called the embedding tensor,

belongs to the 27 ⊗ 78 = 27 ⊕ 351 ⊕ 1728, and satisfies constraints that project out the

27 and the 1728, so that only the 351 representation survives. Thus the constraints found

from supersymmetry and the ones that follow from demanding the consistency of the above

algebra are the same and the existence of one implies the existence of the other.

The reader may be wondering how the above commutators involving Pa can be incor-

porated into a larger algebra involving E11. In a subsequent publication [62] we will show

how by starting from the non-linear realisation of E11 ⊗s l1 one can recover the above com-

mutators. However, the E11 ⊗s l1 formulation resolves certain difficulties one encounters

with the above commutators which are really only valid when projected by the deforma-

tions being considered. Nonetheless, the above commutators serve the purpose in that

they provide a flavour of the underlying derivation of the equations required to find the

dynamics, as will become clear in the following.
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We will now show that the non-linear realisation of the algebra of the equations above

implies the dynamics of the form fields and we will find that the algebra generated by the

TN is the gauge algebra and ΘN
α is the mass deformation parameter. In what follows we

will only consider the sector of the theory involving gauge fields and scalars, thus neglecting

gravity and higher-rank fields. We define the group element to be

g = exp(xaPa) gA gφ , (5.23)

where

gA = eAabc,αRabc,α

eAab
M Rab

M eAa,MRa,M

(5.24)

and

gφ = eφαRα

. (5.25)

We demand that the theory is invariant under

g → g0 g h , (5.26)

where g0 is a rigid element from the whole group and h is a local transformation that is

generated by elements of the Cartan involution invariant sub-algebra. We calculate the

Maurer-Cartan form

V = g−1dg (5.27)

which transforms as

V → h−1Vh + h−1dh . (5.28)

The Cartan forms are invariant under the rigid transformations, but do transform under

the local transformations of equation (5.28) and as a result are usually used to construct

the dynamics.

The Cartan form which is the coefficient of the E6 generators is used to construct the

dynamics of the scalars. For the above algebra this is given by

g−1
φ ∂agφ − g−1

φ Aa,MΘM
αRαgφ ≡ g−1

φ ∂agφ − g−1
φ Aa,MTMgφ . (5.29)

This expression tells us that the theory is gauged with gauge fields Aa,MΘM
α and that

some of the scalars are charged under this gauge group. The gauged vector fields are formed

by using ΘM
α to project the vectors of the massless theory which belong to the 27 of E6

to a subgroup of E6 .

The term in the Cartan form proportional to the one-form generator Ra,M is given by

∂aAb,M −
1

2
Aa,NΘN

α(Dα)M
P Ab,P − 2ZMNAab

N . (5.30)

As discussed elsewhere [24], one must combine E11 with the conformal group and consider

the closure of both groups. On doing this one finds that the object which transforms

covariantly under both groups is that given above with the a and b indices anti-symmetrised,

that is

Fab,M = ∂[aAb],M −
1

2
A[a,NΘN

α(Dα)M
P Ab],P − 2ZMNAab

N . (5.31)
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This is the object that is used to construct the dynamics. We see that the first two terms

reproduce the correct non-abelian term corresponding to the gauged group as it contains a

term bilinear in Aa,P with a coefficient that is the structure constant for the gauge group

generated by TM , see eq. (5.22). This expression also contains a 2-form projected by ZMN

and therefore possesses a gauge invariance under which the vector transforms as

δAa,M = 4ZMNΛa
N , (5.32)

where Λa
M is the gauge parameter associated to the 2-form. All these results precisely

reproduce those of [21].

The vectors that do not form the adjoint of the gauge group are gauged away using

eq. (5.32), and the corresponding 2-forms which are not gauge invariant receive a mass by

means of the Stueckelberg mechanism. These fields have to satisfy self-duality conditions

in order to guarantee that the correct number of degrees of freedom are propagating.

Summarising, if Θ = 0, there is no gauging and the 2-forms do not appear in eq. (5.30).

This means that all the 2-forms can be dualised to vectors, as we are in five dimensions,

and this reproduces the well-known supergravity results for the massless theory. In the

gauged theory, that is if Θ 6= 0, the vectors that do not belong to the adjoint of the gauge

group can be gauged away, so that their correct description is in terms of 2-forms. This

corresponds to the fact that in gauged maximal five dimensional supergravity the vectors

of the abelian theory that are not in the adjoint of the gauge group are dualised to 2-forms.

It would be instructive to complete the above non-linear realisation to find the dynamics

of all the forms.

Although we have carried out the above derivation for the five dimensional case, the

calculation will be very similar in any other dimension. Equations (5.2), (5.3), (5.5), (5.6)

and (5.7) just reflect the representations of the internal symmetry group that the form

generators belong to and equations (5.8), (5.9) and (5.11) specify how all the form gener-

ators are contained in multiple commutators of the 1-form generators. The deformation is

introduced by the commutator of the 1-form generator with the spacetime translations Pa

and it specifies the gauge group. The commutator with the higher form generators with

Pa are then specified by the Jacobi identities. This general pattern will be found in all

dimensions and as a result will the analogous dynamical results.

In the past, the construction of massive supergravities has been carried out by seeing

what deformations the supersymmetry of the massless theory allows. However, as we have

shown E11 provides a systematic and complete construction of all such theories where all the

fields appear together with their magnetic duals. As such, seen from the E11 viewpoint the

massive theories appear naturally and automatically as a result of the underlying algebra.

All the field equations are first order duality conditions. If Θ = 0, these duality conditions

can be used to express the 2-forms in terms of the vectors, while if Θ 6= 0 the vectors that

do not belong to the adjoint of the gauge group can be gauged away using eq. (5.32) and

the duality condition becomes a massive self-duality equation for the 2-forms. This result

naturally generalises to any dimension, and therefore E11 encodes the field content and the

equations of the various supergravity theories.
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6. Conclusions

In this paper we have shown that all maximal supergravity theories in any dimension above

two arise from dimensional reduction of the 11-dimensional E11 non-linear realisation. In

particular, we have determined all the forms, that is gauge fields with totally antisymmetric

indices, that arise from dimensional reduction of the 11-dimensional gauge fields described

in the E11 non-linear realisation. The results are summarised in table 5. We have also

shown that the gauging of five-dimensional maximal supergravity arises from the non-linear

realisation. This result can easily be generalised to any dimension.

The D − 1 forms have field strengths that are dual to masses, and their classification

gives all the possible massive deformations of maximal supergravities in any dimension.

Our results are in complete agreement with the classification of gauged supergravities in

nine dimensions [17] and in any dimension from seven to three [19 – 23] that has been

found using supersymmetry. The 8-dimensional case is an exception, because although a

classification of gauged supergravities has been provided using the Bianchi classification

of group manifolds [18], these results are not formulated in terms of representations of

SL(3, R) × SL(2, R). E11 predicts a mass parameter in the (6,2) ⊕ (3,2), and it would

be of interest to check this prediction in detail in this case. Finally, the D forms that

we find have not been derived from an alternative approach, with the exception of the

10-dimensional case [36, 40]. We would like to stress that the derivation of the forms from

E11 is a very straightforward exercise just involving the algebra.

Hence, taken together with other results, large numbers of the fields that occur in the

E11 non-linear realisation and are beyond the supergravity approximation have been found

to have a physical meaning. Some of the fields for which a physical meaning has been found

are buried deep within the Kac-Moody algebra and are associated with rather negative root

length squared, and some with multiplicities greater than one. Apart from the usual fields

associated with the propagating degrees of freedom of the maximal supergravity theory,

E11 contains their standard magnetic duals as well as fields corresponding to all possible

dual formulations of the physical degrees of freedom. It also contains fields that result in

forms with one less dimension than the space-time they are in, leading to all known massive

supergravities, as well as forms that have the same rank as the number of dimensions of

space-time and are associated with space-filling branes.

While a physical meaning has not been found for all fields in the E11 non-linear real-

isation it would seem very likely that they do possess such an interpretation and they do

not lead to more propagating degrees of freedom beyond those of the maximal supergravity

theory being considered. Thus, even the reader of a sceptical disposition might well con-

cede that E11 is very likely to be a symmetry of the low energy effective actions of string

theory and M theory, as indeed originally conjectured [24].

Further propagating degrees of freedom might arise from the way spacetime is incor-

porated in the theory. As suggested in a recent paper [63], the additional coordinates that

enter when spacetime translations are enlarged to be part of an E11 multiplet may lead to

propagating states in addition to all the fields discussed above. This point is under study.

The results of this paper naturally lead to a number of new investigations. It would be
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interesting to check that the maximal supersymmetry algebras below ten dimensions can

be extended in order to include the D− 1 and spacetime filling forms predicted by E11. In

particular, the ten-dimensional results of references [36, 40] can be extended determining

all the forms that are compatible with the closure of the supersymmetry algebra below

ten dimensions. This would be an additional confirmation that the predictions of E11 are

correct. It would also be interesting to see the constraints for the corresponding branes. In

particular, the charges of the spacetime-filling branes in IIB are constrained to belong to

a non-linear doublet out of the quadruplet of 10-forms [52, 53]. A similar analysis in lower

dimensions should give rise to constraints for the charges associated to the spacetime-filling

forms that we have found.

In would also be interesting to use E11 to find the 3-forms that occur in three dimen-

sions. In order to do this, one should find the multiplicity of the solutions of eq. (2.10)

using eq. (2.21) with q8 ≥ 1 that we have found. The number of such solutions is finite,

and once the multiplicities are obtained, the resulting 3-forms group in representations of

E8. It would then be interesting to match this with the result one could get using su-

persymmetry. One could also repeat the same analysis in two dimensions, studying the

1-forms and 2-forms that arise. In two dimensions, the field strengths of the 1-forms are

dual to masses, and from the analysis carried out in this paper it is evident that there

are an infinite number of such forms, corresponding to an infinite number of deformations.

This is consistent with the expected infinite-dimensional E9 symmetry in two dimensions.

There exists a formulation of M-theory based on the Kac-Moody algebra E10 [64];

although E10 is a subalgebra of E11, the way of introducing spacetime and the resulting

dynamics are different to the E11 formulation used in this paper. Examining the E10 tables

in [42] one can see that the corresponding fields to those of tables 1 and 2 are also present,

while all the fields in table 3 are missing. Thus one would expect the E10 formulation to

also be able to recover the gauged supergravity theories along the lines of this paper, while

the spacetime-filling forms are absent.

The fact that the 9-form of the IIA theory arises from the 11-dimensional field Â10,1,1

will provide the correct framework to understand how the D8-branes are uplifted to 11 di-

mensions. Similar considerations apply to the 11-dimensional origin of the non-perturbative

E8 × E8 heterotic theory, which is conjectured to be dual to M-theory compactified on

S1/Z2 [65].

Another phenomenon in lower dimensions that has implications for how we think about

M theory was the use of U-duality transformations to find the point particle and string

charges multiplets in say three dimensions [66, 67]. These multiplets generically contain

more charges than occur in the supersymmetry algebra and some of them have a rather

exotic index structure. From the E11 view point the brane charges are contained in the E11

multiplet whose first component is the space-time translations, this is just the fundamental

representation of E11 which is associated with the node labelled one [68]. The dimensional

reduction of this single multiplet to lower dimensions has to lead to charge multiplets which

are in complete agreement [69] with those found in references [66, 67]. However, this also

provides an eleven dimensional origin for these charges.

The classification of the gauged supergravities using E11 given in this paper is similar
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D G 1-forms 2-forms 3-forms 4-forms 5-forms 6-forms 7-forms 8-forms 9-forms 10-forms

10A R
+

1 1 1 1 1 1 1 1
1

1

10B SL(2, R) 2 1 2 3
4

2

9 SL(2, R)× R
+

2

2 1 1 2

2 3 3 4

2

1 1 1 2 2

8 SL(3, R)× SL(2, R) (3,2) (3,1) (1, 2) (3,1) (3,2)

(15,1)

(8, 1) (6,2) (3,3)

(1, 3) (3,2) (3,1)

(3,1)

7 SL(5, R) 10 5 5 10 24

40 70

45

15 5

6 SO(5, 5) 16 10 16 45 144

320

126

10

5 E6(+6) 27 27 78 351
1728

27

4 E7(+7) 56 133 912
8645

133

3 E8(+8) 248
3875

?
1

Table 5: Table giving the representations of the symmetry group G of all the forms of maximal

supergravities in any dimension. The D − 2-forms dual to the scalars always belong to the adjoint

representation. The scalars, parametrising the coset G/H, are not included in the table. The

3-forms in 3 dimensions are inside the 248⊕ 248⊕ 3875⊕ 30380⊕ 147250⊕ 779247 of E8.

in that probes of M theory in lower dimensions have found to be precisely accounted for

by E11. However, the work on deformations [19 – 23] provides a more sophisticated probe

in that it relies to a lesser extent on the properties of the internal symmetry group and

uses the detailed structure of supergravity theories. The different lower dimensional probes

can be seen to reveal different aspects of the underlying E11 symmetry, torus dimensional

reduction being just the first to be found. Another lower dimensional probe is that of

reference [70] which involves del Pezzo surfaces, and it is interesting to note that some of

the same internal symmetry multiplets arise. As such, it would be interesting to see how

these results emerge from E11.

Note added. While this work was in the final stages of being written up, we learnt from

B. de Wit that he and H. Samtleben and H. Nicolai have further extended the analysis

of gauged supergravities of ref. [32] to include some higher tensor gauge fields and their

results appear to be in agreement with those found in this paper [71], in particular they
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have recovered from their viewpoint some, but not all, of the entries shown in table 5.
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